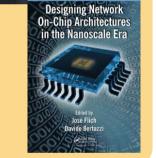


GAP: Grupo de Arquitecturas Paralelas


DISCA: Informática de Sistemas y Computadores

J. Flich, C. Hernández, P. López, S. Sáez, Contact: carherlu@upv.es

esign better architectures, ranging stems to embedded systems. Impr nergy efficiency of high-performan PC and embedded systems.	ove performance and	<i>Optimize system performance by an efficient components, with special emphasis on the in its implications.</i>	0
Group Profile	Recent / C	Ongoing Results	
 NoCs & High Performance Interconnects Topologies Routing algorithms Congestion management Etc. (any related aspect) Architectures FPGA-based Manycore architectures Networks-on-chip Coherence protocols 	 virtical (EU FP7): SW/HW MANGO (FETHPC H2020): GeneratiOn HPC systems RECIPE (FETHPC H2020): F Predictive management o DeepHealth (ICT, H2020): Applications for Health SELENE (ICT, H2020): Self- Systems FRACTAL (ECSEL): A Cognition 	le Silicon-Aware Network-on-Chip Design Platform extensions for heterogenous multicore platforms exploring Manycore Architectures for Next- Reliable power and time-ConstraInts-aware n heterogeneous Exascale systems Deep-Learning and HPC to Boost Biomedical monitored Dependable platform for Safety-Critical tive Fractal and Secure EDGE based on an unique ower Hardware Platform Node	
 Computer Architecture (Degree) Advanced Architectures (Degree) Multicore architectures 	A DOORS.	tion Networks, an Engineering Approach, Morga	INTERCONNECTION INTERCONNECTION NETWORKS, MARINE Later Later Later Later Later

- Designing Network On-Chip Architectures in the Nanoscale Era, **CRC Press**
- High Performance Interconnects
- Networks-on-Chip (Master)
- MIPS simulator for teaching (in-order & out-of-order issue), being adapted to RISCV
- PEAK manycore (MANGO): Customizable manycore architecture based on MIPS ISA (being adapted to RISCV) with support for coherence protocols and Network-on-Chip

- BlueGene/L: Fully Adaptive routing algorithm
- **DESTRO:** Efficient load-balanced routing for Multistage Interconnection Netwoks
- **RECN**: Dynamic Congestion Management strategy for Advanced Switching interconnect
- Innovation LBDR: Logic-Based Distributed Routing for NoCs
- MANGO prototype:
 - 96 high-end FPGAs interconnected in two racks
 - Pluggable I/O and DDR memories on top of **FPGAs**
 - Software runtime adapted to multi-FPGA setting

Group positioning & Perspectives in front of Open-Hw & RISC-V

- Development of open-source simulators for RISC-V ISA
- Currently adapting PEAK manycore to RISC-V architectures, with provisioning for NoC and coherence protocols
- Development of accelerators for RISC-V architectures addressing Artificial Intelligence algorithms
- Use of RISC-V cores on current ongoing projects (SELENE, FRACTAL)

Remarks Global

R+D+i+T

0

"To foster open source development and enrich academia and research groups with robust and powerful ISA. Enabling realistic processor designs with accepted ISA and in a growing ecosystem with accompanying tools and methods."

"Students will be highly motivated by the availability of real processors and the possibilities they will have to influence on processor designs and optimizations."