

ICAS: Integrated Circuits And Systems

IMB-CNM (CSIC)

A. Arnal, J. Aymerich, J. Cisneros, M. Dei, R. Escudé, T. Leung, J.M. Margarit, C. Martínez-Domingo, R. Martínez, J. Puertas, E. Ramon, J. Sacristán, F. Serra-Graells, A. Suanes, <u>Ll. Terés</u>

Contact: Lluis.Teres@imb-cnm.csic.es

Mission Vision

Research and training on *Micro/Nano-Electronic Devices*, *Circuits and Systems Design, Test and Deploy* by means of SoA/new technologies, techniques and open architectures to improve the performances of multi-technology integrated solutions.

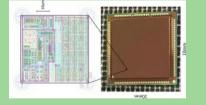
Improve, connect & exploit the new "micro/nano-devices" from different technologies within the "macro" framework of target end applications through smart interfaces developed including the appropriate degree of intelligence and moving to open hardware strategies and solutions.

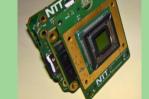
Group Profile

Recent / Ongoing Results

- Low-Power Analog, Mixed & RF CMOS
- IR/XRay Imagers
- Smart sensor frontends
- IP blocks (DAC/ADC, PLL, ...)
- Open hardware and RISC-V based dev.
- Printed/Organic-µelectronics
 - Inkjet Printed Technologies & Devices
 - Organic Thin Film Transistors and Sensors
 - Printed Flexible Circuits

- BrainCom (H2020-FETPROACT-Grant 732032): Cortical implants as braincomputer interfaces for cognitive neuroscience applications.
- EcoTronic (RTI2018-102070-B-C21): Disposable Paper Electronic Devices for Sustainable Eco-friendly Platforms.
- Red-RISCV (RED2018-102384-T): Investigación, Formación e Innovación en Sistemas RISC-V.
- Lagarto-RISC-V (BSC Contract): 1st Spanish-Mexican RISC-V processor on TSMC-65nm silicon chip (via Europractice).


BRAIN COM


- Digital Design
- Microelectronic Design & Test
- Introduction to Computer architecture
- Informatics, Telecomunication & Electronics engineering degrees
- Micro/Nano-Electronics Engineering Master
- Mixed teaching courses: on-line (MOOC) & Classroom
- Publications:
- An Academic EDA Suite for the Full-Custom Design of Mixed-Mode Integrated Circuits, ISCAS-2017
- Digital Systems: from Logic Gates to Processors. Springer, 2017.
- Complex Digital Circuits. Springer 2019.
- UAB Engineering School: Hardware and Computer Architecture degree subjects updated & harmonized on a RISC-V basis (initial phase)

esa

- In the past lots of industry-based R&D
- Now better balanced "research&Industry"
- IR/XRay-ROICs for imagers
- IP-blocks/chips for SilTerra, Arquimea/ESA, NIT.
- More technology transfer to SMEs on printed-organic µelectronics
- Two IP-cores (Temperature sensor & Charge-pump) for SilTerra Co. SILTERRA
- Two ADC IP blocs designed for Arquimea/ESA consortium
- Three different IR-ROIC chip imagers (32x32, 80x80 and 128x128 pixels) transferred to NIT S.L.

Group positioning & Perspectives in front of Open-Hw & RISC-V

- Open Hw/Sw reduces dependency and facilitates collaborative projects and competitive markets.
- Freedom for evolution and helpful for training & education of new generations of professionals on Open Hw/Sw.
- IP-Blocks design (PLL, ADC, SerDes, Memory Ctrl., ...) for RISC-V cores and related application developments.
- Low power RISC-V cores for IoT.
- Use RISC-V as innovator driver-thread for universities and collaborative training strategies for all education levels.
- Just starting an Industrial PhD around RISC-V core for IoT with NVision company

Global Remarks

"To consolidate the open hardware/software strategies based on the new RISC-V architectures, the synergies of the **prodigious circle "Research-Training-Innovation"** are required as an engine for a collaborative and joint evolution of the entire ecosystem that guarantees sustained, sustainable, cooperative and open progress "

"The new open ISA RISC-V architectures offer an opportunity to improve technological independence, reduce oligopoly risks and facilitate market open competition"

aching

Innovation

Research