
Design of an Academic RISC-V Core
Bachelor's Degree Final Project (TFG)

Pau Casacuberta, Raimon Casanova, Ricardo Martínez, David Castells and Lluís Terés
RED2018-102384-T

Motivation
Update academic material.

Gain experience in HW design.

Introduction to the RISC-V ISA.

Explore Open Source
toolchains for HW design.

Methodology

Research Generate
RTL

Test and
Simulate

Flash
FPGA

Design Workflow

3

+

‡

1

2

Write Verilog HDL code with a text editor (VSC).

Update a Git repository.

Using Containers (Docker) with Icarus Verilog and
Continuous Integration (Travis) as a test environment:
a reference model is compared with the new design.

Quartus II suite is used to port the design
into the FPGA using IP libraries to control
other elements of the development board.

3

2

1

+

‡

Objectives
▪ Design a RISC-V core using the RV32I ISA.

▪ Development of a basic modelling &
verification environment written in Verilog.

▪ Implementation & Test in an FPGA.

▪ Adapt the design to work in Pulpino
platform.

●

●

●

●

Architecture

Single Cycle
Processor.

No program or data
memory cache.

No Branch Prediction
mechanism.

No interruptions.

User Level CSR
(only 1).

Simple Design:

“The standardization of an ISA is a great way to allow more and
better accessible development tools, and RISC-V is perfect for that.”

Pulpino
Architecture

FPGA
The core has been implemented in a
DE0 development board from
TeraAsic. Several auxiliary modules
have been added for the
implementation: a PLL to slow down
the clock, debouncers to use
buttons, Memories generated from
Altera IPs, LUTs to display the PC
value with 7 segment displays and a
module to bit map a memory word
to some LEDs in the board.

The source code of this project is available on GitHub:
https://github.com/4a1c0/RV32i-Verilog

Adaptation to Pulpino

The core place a request to perform load/store operations to
the data memory. The core is stalled until the access is granted.

Memory is shared by
different peripherals. A
Request/acknowledge
protocol between the
core and the memory
is necessary.

To implement the
protocol additional
signals are used to
access the
memory.

Main objectives achieved: the design can be simulated
in a Verilog compiler and execute RV32I instructions and
can run compiled C programs on an FPGA.

“The process of creating a core from the ground up is
very helpful to understand how computing works, and
implementing it in an FPGA teaches the hazards of real
Hardware.”

Conclusion

To generate binaries from C code we need
to compile C code with the gnu-riscv-
toolchain and then load it to the FPGA.

